ⓘ Fred Hoyle

Fred Hoyle

ⓘ Fred Hoyle

Sir Fred Hoyle FRS was an English astronomer who formulated the theory of stellar nucleosynthesis. He also held controversial stances on other scientific matters - in particular his rejection of the "Big Bang" theory, a term coined by him on BBC radio, and his promotion of panspermia as the origin of life on Earth. He also wrote science fiction novels, short stories and radio plays, and co-authored twelve books with his son, Geoffrey Hoyle.

He spent most of his working life at the Institute of Astronomy at Cambridge and served as its director for six years.


1. Early life and career

Hoyle was born near Bingley in Gilstead, West Riding of Yorkshire, England. His father, Ben Hoyle, who was a violinist and worked in the wool trade in Bradford, served as a machine gunner in the First World War. His mother, Mabel Pickard, had studied music at the Royal College of Music in London and later worked as a cinema pianist. Hoyle was educated at Bingley Grammar School and read mathematics at Emmanuel College, Cambridge.

In 1936 he won the Mayhew Prize jointly with George Stanley Rushbrooke.

In late 1940, Hoyle left Cambridge to go to Portsmouth to work for the Admiralty on radar research, for example devising a method to get the altitude of the incoming aeroplanes. He was also put in charge of countermeasures against the radar guided guns found on the Graf Spee. Britains radar project employed more personnel than the Manhattan project, and was probably the inspiration for the large British project in The Black Cloud. Two key colleagues in this war work were Hermann Bondi and Thomas Gold, and the three had many and deep discussions on cosmology. The radar work paid for a couple of trips to North America, where he took the opportunity to visit astronomers. On one trip to the US he learned about supernovae at Caltech and Mount Palomar and, in Canada, the nuclear physics of plutonium implosion and explosion, noticed some similarity between the two and started thinking about supernova nucleosynthesis. He had an intuition at the time "I will make a name for myself if this works out." Eventually 1954 his prescient and ground breaking paper came out. He also formed a group at Cambridge exploring Stellar nucleosynthesis in ordinary stars and was bothered by the paucity of stellar carbon production in existing models. He noticed that one of the existing processes would be made a billion times more productive if the carbon-12 nucleus had a resonance at 7.7 MeV, but the nuclear physicists did not list such a one. On another trip he visited the nuclear physics group at Caltech, spending a few months of sabbatical there and persuaded them against their considerable scepticism to look for and find the Hoyle state in carbon-12, from which developed a full theory of stellar nucleosynthesis, co-authored by Hoyle with some members of the Caltech group.

After the war, in 1945, Hoyle returned to Cambridge University, starting as a lecturer at St Johns College, Cambridge. Hoyles Cambridge years, 1945–1973, saw him rise to the top of world astrophysics theory, on the basis of a startling originality of ideas covering a very wide range of topics. In 1958, Hoyle was appointed to the illustrious Plumian Professor of Astronomy and Experimental Philosophy at Cambridge University. In 1967, he became the founding director of the Institute of Theoretical Astronomy, during the planning stage for the 150-inch Anglo-Australian Telescope at Siding Spring Observatory in New South Wales. He became chairman of the Anglo-Australian Telescope board in 1973, and presided at its inauguration in 1974 by Charles, Prince of Wales. After his resignation from Cambridge, Hoyle moved to the Lake District and occupied his time with a mix of treks across the moors, writing books, visiting research centres around the world, and working on science ideas that have been nearly-universally rejected. On 24 November 1997, while hiking across moorlands in west Yorkshire, near his childhood home in Gilstead, Hoyle fell down into a steep ravine called Shipley Glen. Roughly twelve hours later, Hoyle was found by a search dog. He was hospitalised for two months with pneumonia and kidney problems both resulting from hypothermia, as well as a broken shoulder from the fall. Thereafter he went into marked decline, suffering from memory and mental agility problems. In 2001, he suffered a series of strokes and died in Bournemouth on 20 August of that year.


2. Origin of nucleosynthesis

Hoyle authored the first two research papers ever published on the synthesis of the chemical elements heavier than helium by nuclear reactions in stars. The first of these in 1946 showed that the cores of stars will evolve to temperatures of billions of degrees, much hotter than temperatures considered for thermonuclear origin of stellar power in main sequence stars. Hoyle showed that at such high temperatures the element iron can become much more abundant than other heavy elements owing to thermal equilibrium among nuclear particles, explaining the high natural abundance of iron. This idea would later be called the e Process. Hoyles second foundational nucleosynthesis publication showed that the elements between carbon and iron cannot be synthesized by such equilibrium processes. He attributed those elements to specific nuclear fusion reactions between abundant constituents in concentric shells of evolved massive, pre-supernova stars. This startlingly modern picture is the accepted paradigm today for the supernova nucleosynthesis of these primary elements. In the mid 1950s, Hoyle became the leader of a group of very talented experimental and theoretical physicists who met in Cambridge: William Alfred Fowler, Margaret Burbidge, and Geoffrey Burbidge. This group systematized basic ideas of how all the chemical elements in our universe were created, with this now being a field called nucleosynthesis. Famously, in 1957, this group produced the B 2 FH paper known for the initials of the four authors in which the field of nucleosynthesis was organized into complementary nuclear processes. They also added much new material on the synthesis of heavy elements by neutron-capture reactions, the so-called s process and the r process. So influential did the B 2 FH paper become that for the remainder of the twentieth century it became the default citation of almost all researchers wishing to cite an accepted origin for nucleosynthesis theory, and as a result the path breaking Hoyle 1954 paper fell into obscurity. Historical research in the 21st century has brought Hoyles 1954 paper back to scientific prominence. Those historical arguments were first presented to a gathering of nucleosynthesis experts attending a 2007 conference at Caltech organized after the deaths of both Fowler and Hoyle to celebrate the 50th anniversary of the publication of B 2 FH. Ironically the B 2 FH paper did not review Hoyles 1954 supernova-shells attribution of the origin of elements between silicon and iron despite Hoyles co-authorship of B 2 FH. Based on his many personal discussions with Hoyle Donald D. Clayton has attributed this seemingly inexplicable oversight in B 2 FH to the lack of proofreading by Hoyle of the draft composed at Caltech in 1956 by G.R. Burbidge and E.M. Burbidge.

The second of Hoyles nucleosynthesis papers also introduced an interesting use of the anthropic principle, which was not then known by that name. In trying to work out the routes of stellar nucleosynthesis, Hoyle calculated that one particular nuclear reaction, the triple-alpha process, which generates carbon from helium, would require the carbon nucleus to have a very specific resonance energy and spin for it to work. The large amount of carbon in the universe, which makes it possible for carbon-based life-forms of any kind to exist, demonstrated to Hoyle that this nuclear reaction must work. Based on this notion, Hoyle therefore predicted the values of the energy, the nuclear spin and the parity of the compound state in the carbon nucleus formed by three alpha particles helium nuclei, which was later borne out by experiment.

This energy level, while needed to produce carbon in large quantities, was statistically very unlikely to fall where it does in the scheme of carbon energy levels. Hoyle later wrote:

Would you not say to yourself, "Some super-calculating intellect must have designed the properties of the carbon atom, otherwise the chance of my finding such an atom through the blind forces of nature would be utterly minuscule. A common sense interpretation of the facts suggests that a superintellect has monkeyed with physics, as well as with chemistry and biology, and that there are no blind forces worth speaking about in nature. The numbers one calculates from the facts seem to me so overwhelming as to put this conclusion almost beyond question."

His co-worker William Alfred Fowler eventually won the Nobel Prize for Physics in 1983 with Subrahmanyan Chandrasekhar, but for some reason Hoyles original contribution was overlooked by the electors, and many were surprised that such a notable astronomer missed out. Fowler himself in an autobiographical sketch affirmed Hoyles pioneering efforts:

The concept of nucleosynthesis in stars was first established by Hoyle in 1946. This provided a way to explain the existence of elements heavier than helium in the universe, basically by showing that critical elements such as carbon could be generated in stars and then incorporated in other stars and planets when that star "dies". The new stars formed now start off with these heavier elements and even heavier elements are formed from them. Hoyle theorized that other rarer elements could be explained by supernovas, the giant explosions which occasionally occur throughout the universe, whose temperatures and pressures would be required to create such elements.


3. Rejection of the Big Bang

While having no argument with the Lemaitre theory later confirmed by Edwin Hubbles observations that the universe was expanding, Hoyle disagreed on its interpretation. He found the idea that the universe had a beginning to be pseudoscience, resembling arguments for a creator, "for its an irrational process, and cant be described in scientific terms" see Kalam cosmological argument. Instead, Hoyle, along with Thomas Gold and Hermann Bondi with whom he had worked on radar in the Second World War, in 1948 began to argue for the universe as being in a "steady state" and formulated their Steady State theory. The theory tried to explain how the universe could be eternal and essentially unchanging while still having the galaxies we observe moving away from each other. The theory hinged on the creation of matter between galaxies over time, so that even though galaxies get further apart, new ones that develop between them fill the space they leave. The resulting universe is in a "steady state" in the same manner that a flowing river is - the individual water molecules are moving away but the overall river remains the same.

The theory was one alternative to the Big Bang which, like the Big Bang, agreed with key observations of the day, namely Hubbles red shift observations, and Hoyle was a strong critic of the Big Bang. He coined the term "Big Bang" on BBC radios Third Programme broadcast on 28 March 1949. It was popularly reported by George Gamov and his opponents that Hoyle intended to be pejorative, and the script from which he read aloud was interpreted by his opponents to be "vain, one-sided, insulting, not worthy of the BBC". Hoyle explicitly denied that he was being insulting and said it was just a striking image meant to emphasize the difference between the two theories for the radio audience. In another BBC interview he said "The reason why scientists like the "big bang" is because they are overshadowed by the Book of Genesis. It is deep within the psyche of most scientists to believe in the first page of Genesis".

Hoyle had a famously heated argument with Martin Ryle of the Cavendish Radio Astronomy Group about Hoyles steady state theory, which somewhat restricted collaboration between the Cavendish group and the Cambridge Institute of Astronomy during the 1960s.

Hoyle, unlike Gold and Bondi, offered an explanation for the appearance of new matter by postulating the existence of what he dubbed the "creation field", or just the "C-field", which had negative pressure in order to be consistent with the conservation of energy and drive the expansion of the universe. These features of the C-field anticipated the later development of cosmic inflation. They jointly argued that continuous creation was no more inexplicable than the appearance of the entire universe from nothing, although it had to be done on a regular basis. In the end, mounting observational evidence convinced most cosmologists that the steady state model was incorrect and that the Big Bang was the theory that agreed better with observations, although Hoyle continued to support and develop his theory. In 1993, in an attempt to explain some of the evidence against the steady state theory, he presented a modified version called "quasi-steady state cosmology" QSS, but the theory is not widely accepted.

The evidence that resulted in the Big Bangs victory over the steady state model included the discovery of the cosmic microwave background radiation in the 1960s, and the distribution of "young galaxies" and quasars throughout the Universe in the 1980s indicate a more consistent age estimate of the universe. Hoyle died in 2001 never accepting the Big Bang theory.

"How, in the big-bang cosmology, is the microwave background explained? Despite what supporters of big-bang cosmology claim, it is not explained. The supposed explanation is nothing but an entry in the gardeners catalogue of hypothesis that constitutes the theory. Had observation given 27 Kelvins instead of 2.7 Kelvins for the temperature, then 27 kelvins would have been entered in the catalogue. Or 0.27 Kelvins. Or anything at all."


4. Theory of gravity

Together with Narlikar, Hoyle developed a particle theory in the 1960s, the Hoyle–Narlikar theory of gravity. It made predictions that were roughly the same as Einsteins general relativity, but it incorporated Machs Principle, which Einstein had tried but failed to incorporate in his theory. The Hoyle-Narlikar theory failed several tests, including consistency with the microwave background. It was motivated by their belief in the steady state model of the universe.


5. Rejection of Earth-based abiogenesis

In his later years, Hoyle became a staunch critic of theories of abiogenesis to explain the origin of life on Earth. With Chandra Wickramasinghe, Hoyle promoted the hypothesis that the first life on Earth began in space, spreading through the universe via panspermia, and that evolution on Earth is influenced by a steady influx of viruses arriving via comets. His belief that comets had a significant percentage of organic compounds was well ahead of his time, as the dominant views in the 1970s and 1980s were that comets largely consisted of water-ice, and the presence of organic compounds was then highly controversial. Wickramasinghe wrote in 2003: "In the highly polarized polemic between Darwinism and creationism, our position is unique. Although we do not align ourselves with either side, both sides treat us as opponents. Thus we are outsiders with an unusual perspective - and our suggestion for a way out of the crisis has not yet been considered."

Hoyle and Wickramasinghe advanced several instances where they say outbreaks of illnesses on Earth are of extraterrestrial origins, including the 1918 flu pandemic, and certain outbreaks of polio and mad cow disease. For the 1918 flu pandemic, they hypothesized that cometary dust brought the virus to Earth simultaneously at multiple locations - a view almost universally dismissed by experts on this pandemic. In 1982 Hoyle presented Evolution from Space for the Royal Institutions Omni Lecture. After considering what he thought of as a very remote possibility of Earth-based abiogenesis he concluded:

If one proceeds directly and straightforwardly in this matter, without being deflected by a fear of incurring the wrath of scientific opinion, one arrives at the conclusion that biomaterials with their amazing measure of order must be the outcome of intelligent design. No other possibility I have been able to think of.

Published in his 1982/1984 books Evolution from Space co-authored with Chandra Wickramasinghe, Hoyle calculated that the chance of obtaining the required set of enzymes for even the simplest living cell without panspermia was one in 10 40.000. Since the number of atoms in the known universe is infinitesimally tiny by comparison 10 80, he argued that Earth as lifes place of origin could be ruled out. He claimed:

The notion that not only the biopolymer but the operating program of a living cell could be arrived at by chance in a primordial organic soup here on the Earth is evidently nonsense of a high order.

Though Hoyle declared himself an atheist, this apparent suggestion of a guiding hand led him to the conclusion that "a superintellect has monkeyed with physics, as well as with chemistry and biology, and. there are no blind forces worth speaking about in nature." He would go on to compare the random emergence of even the simplest cell without panspermia to the likelihood that "a tornado sweeping through a junk-yard might assemble a Boeing 747 from the materials therein" and to compare the chance of obtaining even a single functioning protein by chance combination of amino acids to a solar system full of blind men solving Rubiks Cubes simultaneously. Those who advocate the intelligent design ID belief sometimes cite Hoyles work in this area to support the claim that the universe was fine tuned in order to allow intelligent life to be possible.


6. Other controversies

While Hoyle was well-regarded for his works on nucleosynthesis and science popularization, he held controversial positions on a wide range of scientific issues, often in direct opposition to the prevailing theories of the scientific community. Paul Davies describes how he "loved his maverick personality and contempt for orthodoxy", quoting Hoyle as saying "I dont care what they think" about his theories on discrepant redshift, and "it is better to be interesting and wrong than boring and right".

Hoyle often expressed anger against the labyrinthine and petty politics at Cambridge and frequently feuded with members and institutions of all levels of the British astronomy community, leading to his resignation from Cambridge in September 1971 over the way he thought Donald Lynden-Bell was chosen to replace retiring professor Roderick Oliver Redman behind his back. According to biographer Simon Mitton, Hoyle was crestfallen because he felt that his colleagues at Cambridge were unsupportive.

In addition to his views on steady state theory and panspermia, Hoyle also supported the following controversial hypotheses and speculations:

  • The use of the fifty-six Aubrey holes at Stonehenge as a system for the neolithic Britons to predict eclipses, using them in the daily positioning of marker stones as proposed in his 1977 book On Stonehenge. The use of the Aubrey holes for predicting lunar eclipses was originally proposed by Gerald Hawkins whose book of the subject Stonehenge Decoded 1965 predates Hoyles.
  • The correlation of flu epidemics with the sunspot cycle, with epidemics occurring at the minimum of the cycle. The idea was that flu contagion was scattered in the interstellar medium and reached Earth only when the solar wind had minimum power.
  • The fossil Archaeopteryx was a man-made fake. This assertion was definitively refuted by, among other strong indications, the presence of microcracks extending through the fossil into the surrounding rock.
  • The theory of abiogenic petroleum, held by Hoyle and by Thomas Gold, where natural hydrocarbons oil and natural gas are explained as the result of deep carbon deposits, instead of fossilized organic material. This theory is dismissed by the mainstream petroleum geochemistry community.


6.1. Other controversies Nobel Physics Prizes

Hoyle was also at the centre of two unrelated controversies involving the politics for selecting the winner of the Nobel Prize for Physics. The first came when the 1974 prize went, in part, to Antony Hewish for his leading role in the discovery of pulsars. Promptly Hoyle made an off-the-cuff remark to a reporter in Montreal that "Yes, Jocelyn Bell was the actual discoverer, not Hewish, who was her supervisor, so she should have been included." This remark received widespread international coverage. Worried about being misunderstood and by British libel laws, Hoyle carefully composed a letter of explanation to The Times.

The second controversy came when the 1983 prize went in part to William Alfred Fowler "for his theoretical and experimental studies of the nuclear reactions of importance in the formation of the chemical elements in the universe." The controversy arose because Hoyle had been the inventor of the theory of nucleosynthesis in the stars with two research papers published shortly after WWII. So some suspicion arose that Hoyle was denied the third share of this prize because of his earlier public disagreement with the 1974 award. British scientist Harry Kroto later said that the Nobel Prize is not just an award for a piece of work, but a recognition of a scientists overall reputation and Hoyles championing many disreputable and disproven ideas may have invalidated him. In Nature, editor John Maddox called it "shameful" that Fowler had been rewarded with a Nobel prize and Hoyle had not.


7. Media appearances

Hoyle appeared in a series of radio talks on astronomy for the BBC in the 1950s; these were collected in the book The Nature of the Universe, and he went on to write a number of other popular science books. In the play Sur la route de Montalcino, the character of Fred Hoyle confronts Georges Lemaitre on a fictional journey to the Vatican in 1957. Hoyle also appeared in the 1973 short film Take the World From Another Point of View.


8. Honours


  • Balzan Prize for Astrophysics: evolution of stars 1994, with Martin Schwarzschild
  • Crafoord Prize from the Royal Swedish Academy of Sciences, with Edwin Salpeter 1997
  • Henry Norris Russell Lectureship 1971
  • Royal Medal 1974
  • Bakerian Lecture 1968
  • President of the Royal Astronomical Society 1971–1973
  • Elected a Fellow of the Royal Society FRS in 1957
  • Knighthood 1972
  • Gold Medal of the Royal Astronomical Society 1968
  • Bruce Medal 1970
  • Klumpke-Roberts Award of the Astronomical Society of the Pacific 1977
  • Jansky Lectureship before the National Radio Astronomy Observatory

Named after him

  • Hoyle Building, Institute of Astronomy, Cambridge
  • Janibacter hoylei, species of bacteria discovered by ISRO scientists
  • Asteroid 8077 Hoyle
  • Sir Fred Hoyle Way, a stretch of the A650 dual carriageway in Bingley.
  • Institute of Physics Fred Hoyle Medal and Prize

8.1. Honours Fonds

The Fred Hoyle Collection at St Johns College Library contains "a pair of walking boots, five boxes of photographs, two ice axes, some dental X-rays, a telescope, ten large film reels and an unpublished opera" in addition to 150 document boxes of papers.


9.1. Bibliography Non-fiction

  • Diseases from Space with Chandra Wickramasinghe
  • Lifecloud – The Origin of Life in the Universe, Hoyle, F. and Wickramasinghe C., J.M. Dent and Sons, 1978. ISBN 0-460-04335-8
  • Viruses from Space, 1986, ISBN 0906449936
  • The Origin of the Universe and the Origin of Religion,1993, ISBN 1-55921-083-4
  • Galaxies, Nuclei, and Quasars, Harper & Row, Publishers, New York, 1965, LCCN 65-20996
  • The big bang in astronomy, New Scientist 92 1280:527, 19 November 1981.
  • Frontiers of Astronomy, Heinemann Education Books Limited, London, 1955. The Internet Archive. HarperCollins, ISBN 978-0060027605
  • Astronomy, A history of mans investigation of the universe, Crescent Books, Inc., London 1962, LCCN 62-14108
  • Home Is Where the Wind Blows: Chapters from a Cosmologists Life autobiography Oxford University Press 1994, ISBN 0-19-850060-2
  • Nicolaus Copernicus, Heinemann Educational Books Ltd., London, p. 78, 1973
  • Burbidge, E.M., Burbidge, G.R., Fowler, W.A. and Hoyle, F., "Synthesis of the Elements in Stars", Revs. Mod. Physics 29: 547–650, 1957, the famous B 2 FH paper after their initials, for which Hoyle is most famous among professional cosmologists.
  • On Stonehenge, 1977, London: Heinemann Educational, ISBN 978-0-435-32958-7; San Francisco: W.H. Freeman and Company, ISBN 0-7167-0364-5, 0-7167-0363-7 pbk.
  • Evolution from Space: A Theory of Cosmic Creationism, 1984, ISBN 0-671-49263-2
  • Energy or Extinction? The case for nuclear energy, 1977, Heinemann Educational Books Limited, ISBN 0-435-54430-6. In this provocative book Hoyle establishes the dependence of Western civilization on energy consumption and predicts that nuclear fission as a source of energy is essential for its survival.
  • The Nature of the Universe – a series of broadcast lectures, Basil Blackwell, Oxford 1950 early use of the big bang phrase
  • Ten Faces of the Universe, 1977, W.H. Freeman and Company San Francisco, ISBN 0-7167-0384-X, ISBN 0-7167-0383-1
  • The Intelligent Universe, 1983
  • Astronomy and Cosmology: A Modern Course, 1975, ISBN 0-7167-0351-3
  • Of men and galaxies, Seattle University of Washington, 1964, ASIN B0087VKR70
  • Commonsense in Nuclear Energy, Fred Hoyle and Geoffrey Hoyle, 1980, Heinemann Educational Books Ltd., ISBN 0-435-54432-2
  • Evolution from space the Omni lecture and other papers on the origin of life 1982, ISBN 0-89490-083-8
  • With G. Burbridge and Narlikar J.V. A Different Approach to Cosmology, Cambridge University Press 2000, ISBN 0-521-66223-0
  • With Jayant Narlikar and Chandra Wickramasinghe, The extragalactic universe: an alternative view, Nature 346: 807–812, 30 August 1990.
  • Mathematics of Evolution, 1987 University College Cardiff Press, 1999 Acorn Enterprises LLC., ISBN 0-9669934-0-3
  • From Grains to Bacteria, Hoyle, F. and Wickramasinghe N.C., University College Cardiff Press, ISBN 0-906449-64-2, 1984
  • Ice, the Ultimate Human Catastrophe,1981, ISBN 0-8264-0064-7 Snippet view from Google Books


9.2. Bibliography Science fiction

Hoyle also wrote science fiction. In his first novel, The Black Cloud, most intelligent life in the universe takes the form of interstellar gas clouds; they are surprised to learn that intelligent life can also form on planets. He wrote a television series, A for Andromeda, which was also published as a novel. His play Rockets in Ursa Major had a professional production at the Mermaid Theatre in 1962.

  • The Frozen Planet of Azuron, 1982 co-authored with Geoffrey Hoyle
  • The Giants of Universal Park, 1982 co-authored with Geoffrey Hoyle
  • The Black Cloud, 1957
  • Rockets in Ursa Major, 1969 co-authored with Geoffrey Hoyle
  • Fifth Planet, 1963 co-authored with Geoffrey Hoyle
  • The Westminster Disaster, 1978 co-authored with Geoffrey Hoyle and Edited by Barbara Hoyle
  • Andromeda Breakthrough, 1965 co-authored with John Elliot
  • The Energy Pirate, 1982 Ladybird Books, co-authored with Geoffrey Hoyle
  • Seven Steps to the Sun, 1970 co-authored with Geoffrey Hoyle
  • The Incandescent Ones, 1977 co-authored with Geoffrey Hoyle
  • The Inferno, 10/1973 co-authored with Geoffrey Hoyle
  • October the First Is Too Late, 1966
  • Comet Halley, 11/1985
  • Element 79, 1967
  • Into Deepest Space, 1974 co-authored with Geoffrey Hoyle
  • A for Andromeda, 1962 co-authored with John Elliot
  • Ossians Ride, 1959
  • The Planet of Death, 1982 Ladybird Books, co-authored with Geoffrey Hoyle
  • The Molecule Men and the Monster of Loch Ness, 1973 co-authored with Geoffrey Hoyle

Most of these are independent of each other. Andromeda Breakthrough is a sequel to A for Andromeda and Into Deepest Space is a sequel to Rockets in Ursa Major. The four Ladybird Books are intended for children.

Some stories of the anthology Element 79 are fantasy, in particular "Welcome to Slippage City" and "The Judgement of Aphrodite". Both introduce mythological characters.

The Telegraph UK called him a "masterful" science fiction writer.

  • astrophysicist Fred Hoyle used the fact that carbon - 12 is abundant in the universe as evidence for the existence of a carbon - 12 resonance. The only way Hoyle could
  • popular BBC TV science fiction serial A for Andromeda, again written by Fred Hoyle and John Elliot. Kidnapped by Intel representative Kaufman John Hollis
  • most well known of these is his biography of fellow Cambridge astronomer Fred Hoyle Mitton was elected to Council of the Royal Astronomical Society 2012 2016
  • According to Hoyle is a lost 1922 American silent adventure film directed by W.S. Van Dyke and starring David Butler, Helen Ferguson, and Philip Ford
  • steady state cosmologies were published by Hermann Bondi, Thomas Gold, and Fred Hoyle in 1948. It is now known that Albert Einstein considered a steady state
  • events. April 7 : Henry Kuttner, American writer died 1958 June 24 : Fred Hoyle American writer and astronomer died 2001 August 24 : James Tiptree
  • protoplanetary disk around the young star HL Tauri. In 2017 she was awarded the Fred Hoyle Medal and Prize of the Institute of Physics for her significant contribution
  • Medal 2010 Jean Ricard Prize 2012 Eddington Medal 2014 Ampere Prize 2019 Fred Hoyle Medal and Prize CNRS Silver Medalists Archived from the original on
  • science fiction short stories authored by English astronomer and writer Fred Hoyle and published in 1969. Included in the collection is the eponymous short
  • physicists, including Niels Bohr, Albert Einstein, Erwin Schrodinger, Fred Hoyle Wolfgang Pauli, Paul Dirac, Abdus Salam, and J. Robert Oppenheimer, as
  • October the First is Too Late is a science fiction novel by astrophysicist Fred Hoyle It was first published in 1966. The novel describes an extraordinary
  • number of textbooks used by students world - wide. He collaborated with Fred Hoyle and Stephen Hawking at the University of Cambridge on problems of helium

Users also searched:

fred hoyle family, fred hoyle nobel prize, fred hoyle panspermia, fred hoyle wife, the intelligent universe fred hoyle pdf,