ⓘ List of programming languages by type


Non-English-based programming languages

The use of the English language in the inspiration for the choice of elements, in particular for keywords in computer programming languages and code libraries, represents a significant trend in the history of language design. According to the HOPL online database of languages, out of the 8.500+ programming languages recorded, roughly 2.400 of them were developed in the United States, 600 in the United Kingdom, 160 in Canada, and 75 in Australia. Thus, over a third of all programming languages have been developed in countries where English is the primary language. This does not take into ac ...

List of programming languages by type

ⓘ List of programming languages by type

This is a list of notable programming languages, grouped by type.

There is no overarching classification scheme for programming languages. Thus, in many cases, a language is listed under multiple headings.


1. Array languages

Array programming also termed vector or multidimensional languages generalize operations on scalars to apply transparently to vectors, matrices, and higher-dimensional arrays.


2. Assembly languages

Assembly languages directly correspond to a machine language see below so machine code instructions appear in a form understandable by humans. Assembly languages let programmers use symbolic addresses, which the assembler converts to absolute addresses. Most assemblers also support macros and symbolic constants.


3. Authoring languages

An authoring language is a programming language used to create tutorials, websites, and other interactive computer programs.

  • Darwin Information Typing Architecture DITA
  • Lasso

4. Constraint programming languages

A constraint programming language is a declarative programming language where relationships between variables are expressed as constraints. Execution proceeds by attempting to find values for the variables which satisfy all declared constraints.

  • ECLiPSe

5. Concurrent languages

Message passing languages provide language constructs for concurrency. The predominant paradigm for concurrency in mainstream languages such as Java is shared memory concurrency. Concurrent languages that make use of message passing have generally been inspired by process calculi such as communicating sequential processes CSP or the π-calculus.


6. Curly-bracket languages

Curly-bracket or curly-brace programming languages have a syntax that defines statement blocks using the curly bracket or brace characters { and }. This syntax originated with BCPL 1966, and was popularized by C. Many curly-bracket languages descend from or are strongly influenced by C. Examples of curly-bracket languages include:


7. Dataflow languages

Dataflow programming languages rely on a usually visual representation of the flow of data to specify the program. Frequently used for reacting to discrete events for processing streams of data. Examples of dataflow languages include:


8. Data-oriented languages

Data-oriented languages provide powerful ways of searching and manipulating the relations that have been described as entity relationship tables which map one set of things into other sets. Examples of data-oriented languages include:


9. Decision table languages

Decision tables can be used as an aid to clarifying the logic before writing a program in any language, but in the 1960s a number of languages were developed where the main logic is expressed directly in the form of a decision table, including:

  • Filetab

10. Declarative languages

Declarative languages express the logic of a computation without describing its control flow in detail. Declarative programming stands in contrast to imperative programming via imperative programming languages, where control flow is specified by serial orders imperatives. Pure functional and logic-based programming languages are also declarative, and constitute the major subcategories of the declarative category. This section lists additional examples not in those subcategories.

  • QML
  • Distributed Application Specification Language DASL combine declarative programming and imperative programming
  • Modelica
  • Oz
  • ECL
  • XSL Transformations
  • Analytica
  • Mercury
  • Gremlin
  • Cypher
  • Wolfram Language
  • Lustre
  • SequenceL – purely functional, automatically parallelizing and race-free
  • SQL
  • RDQL
  • Ant combine declarative programming and imperative programming
  • Prolog
  • MetaPost
  • xBase


11.1. Embeddable languages In source code

Source embeddable languages embed small pieces of executable code inside a piece of free-form text, often a web page.

Client-side embedded languages are limited by the abilities of the browser or intended client. They aim to provide dynamism to web pages without the need to recontact the server.

Server-side embedded languages are much more flexible, since almost any language can be built into a server. The aim of having fragments of server-side code embedded in a web page is to generate additional markup dynamically; the code itself disappears when the page is served, to be replaced by its output.


11.2. Embeddable languages Server side

  • SMX – dedicated to web pages
  • WebDNA – dedicated to database-driven websites
  • Tcl – server-side in NaviServer and an essential component in electronics industry systems
  • PHP
  • VBScript

The above examples are particularly dedicated to this purpose. A large number of other languages, such as Erlang, Scala, Perl and Ruby can be adapted for instance, by being made into Apache modules.


11.3. Embeddable languages Client side

  • VBScript Windows only
  • ActionScript
  • JavaScript aka ECMAScript or JScript

11.4. Embeddable languages In object code

A wide variety of dynamic or scripting languages can be embedded in compiled executable code. Basically, object code for the languages interpreter needs to be linked into the executable. Source code fragments for the embedded language can then be passed to an evaluation function as strings. Application control languages can be implemented this way, if the source code is input by the user. Languages with small interpreters are preferred.


12. Esoteric languages

An esoteric programming language is a programming language designed as a test of the boundaries of computer programming language design, as a proof of concept, or as a joke.


13. Functional languages

Functional programming languages define programs and subroutines as mathematical functions and treat them as first-class. Many so-called functional languages are "impure", containing imperative features. Many functional languages are tied to mathematical calculation tools. Functional languages include:


14. Hardware description languages

In electronics, a hardware description language HDL is a specialized computer language used to describe the structure, design, and operation of electronic circuits, and most commonly, digital logic circuits. The two most widely used and well-supported HDL varieties used in industry are Verilog and VHDL. Hardware description languages include:

HDLs for analog circuit design

  • Verilog-AMS Verilog for Analog and Mixed-Signal
  • VHDL-AMS VHDL with Analog/Mixed-Signal extension

15. Imperative languages

Imperative programming languages may be multi-paradigm and appear in other classifications. Here is a list of programming languages that follow the imperative paradigm:


16. Interactive mode languages

Interactive mode languages act as a kind of shell: expressions or statements can be entered one at a time, and the result of their evaluation is seen immediately. The interactive mode is also termed a read–eval–print loop REPL.


17. Interpreted languages

Interpreted languages are programming languages in which programs may be executed from source code form, by an interpreter. Theoretically, any language can be compiled or interpreted, so the term interpreted language generally refers to languages that are usually interpreted rather than compiled.


18. Little languages

Little languages serve a specialized problem domain.

  • awk – can serve as a prototyping language for C shares similar syntax
  • Comet – used to solve complex combinatorial optimization problems in areas such as resource allocation and scheduling
  • sed – parses and transforms text
  • SQL – has only a few keywords, and not all the constructs needed for a full programming language – many database management systems extend SQL with additional constructs as a stored procedure language

19. Logic-based languages

Logic-based languages specify a set of attributes that a solution must have, rather than a set of steps to obtain a solution.


  • Alma-0
  • Oz, and Mozart Programming System cross-platform Oz
  • Prolog formulates data and the program evaluation mechanism as a special form of mathematical logic called Horn logic and a general proving mechanism called logical resolution
  • Fril
  • Curry
  • ALF
  • Mercury based on Prolog
  • Visual Prolog object-oriented Prolog extension
  • CLACL CLAC-Language
  • Janus
  • λProlog
  • ROOP

20. Machine languages

Machine languages are directly executable by a computers CPU. They are typically formulated as bit patterns, usually represented in octal or hexadecimal. Each bit pattern causes the circuits in the CPU to execute one of the fundamental operations of the hardware. The activation of specific electrical inputs e.g., CPU package pins for microprocessors, and logical settings for CPU state values, control the processors computation. Individual machine languages are specific to a family of processors; machine-language code for one family of processors cannot run directly on processors in another family unless the processors in question have additional hardware to support it for example, DEC VAX processors included a PDP-11 compatibility mode. They are essentially always defined by the CPU developer, not by 3rd parties. The symbolic version, the processors assembly language, is also defined by the developer, in most cases. Some commonly used machine code instruction sets are:


21.1. Macro languages Textual substitution macro languages

Macro languages transform one source code file into another. A "macro" is essentially a short piece of text that expands into a longer one not to be confused with hygienic macros, possibly with parameter substitution. They are often used to preprocess source code. Preprocessors can also supply facilities like file inclusion.

Macro languages may be restricted to acting on specially labeled code regions pre-fixed with a # in the case of the C preprocessor. Alternatively, they may not, but in this case it is still often undesirable to for instance expand a macro embedded in a string literal, so they still need a rudimentary awareness of syntax. That being the case, they are often still applicable to more than one language. Contrast with source-embeddable languages like PHP, which are fully featured.

  • ML/I general purpose macro processor
  • m4 originally from AT&T, bundled with Unix
  • cpp the C preprocessor


21.2. Macro languages Application macro languages

Scripting languages such as Tcl and ECMAScript have been embedded into applications. These are sometimes called "macro languages", although in a somewhat different sense to textual-substitution macros like m4.


22. Metaprogramming languages

Metaprogramming is the writing of programs that write or manipulate other programs, including themselves, as their data or that do part of the work that is otherwise done at run time during compile time. In many cases, this allows programmers to get more done in the same amount of time as they would take to write all the code manually.


23. Multiparadigm languages

Multiparadigm languages support more than one programming paradigm. They allow a program to use more than one programming style. The goal is to allow programmers to use the best tool for a job, admitting that no one paradigm solves all problems in the easiest or most efficient way.

  • APL)
  • Curry
  • JavaScript
  • ActionScript
  • ECMAScript for XML
  • 1C:Enterprise programming language
  • Ada, imperative, object-oriented class-based)
  • C++, functional, metaprogramming for large-scale, complex, high-performance)
  • Alma-0
  • JScript
  • eC)
  • Delphi Object Pascal, metaprogramming)
  • ALF functional, logic
  • C#, functional, declarative)
  • Curl, metaprogramming)
  • BETA)
  • D, metaprogramming)
  • Dylan functional, object-oriented class-based)
  • ECMAScript)
  • Ceylon, functional, declarative)
  • Common Lisp, aspect-oriented)
  • Cobra, functional, contractual)
  • ChucK
  • Lua)
  • Rust
  • Tcl)
  • Red, metaprogramming dialected)
  • Mercury
  • Oz functional evaluation: eager, lazy, logic, constraint, imperative, object-oriented class-based, concurrent, distributed), and Mozart Programming System cross-platform Oz
  • Swift
  • Scala functional, object-oriented
  • R
  • J)
  • Racket and can be extended by the user)
  • F#, language-oriented)
  • Prograph dataflow, object-oriented class-based, visual)
  • Groovy functional, object-oriented class-based,imperative,procedural)
  • Fantom functional, object-oriented class-based)
  • Seed7
  • PHP imperative, object-oriented
  • OCaml, modular)
  • Metaobject protocols object-oriented class-based, prototype-based)
  • Ruby, metaprogramming)
  • ROOP, rule-based)
  • Perl imperative, functional cant be purely functional, object-oriented, class-oriented, aspect-oriented through modules)
  • Objective-C imperative, object-oriented class-based, reflective)
  • Eiffel imperative, object-oriented class-based, generic, functional agents, concurrent SCOOP)
  • Python, imperative, metaprogramming, extension, impure, interactive mode, iterative, reflective, scripting)
  • REBOL, metaprogramming dialected)
  • Nemerle functional, object-oriented class-based, imperative, metaprogramming)
  • Object Pascal imperative, object-oriented class-based)
  • LabVIEW dataflow, visual
  • Pike
  • Julia imperative, multiple dispatch "object-oriented", functional, metaprogramming)
  • Spreadsheets functional, visual
  • Go imperative, procedural,
  • Lava object-oriented class-based, visual)
  • Hop
  • Tea)
  • Harbour
  • Wolfram Language
  • Windows PowerShell)

24. Object-oriented class-based languages

Class-based Object-oriented programming languages support objects defined by their class. Class definitions include member data. Message passing is a key concept if not the key concept in Object-oriented languages.

Polymorphic functions parameterized by the class of some of their arguments are typically called methods. In languages with single dispatch, classes typically also include method definitions. In languages with multiple dispatch, methods are defined by generic functions. There are exceptions where single dispatch methods are generic functions e.g. Bigloos object system.


25. Procedural languages

Procedural programming languages are based on the concept of the unit and scope the data viewing range of an executable code statement. A procedural program is composed of one or more units or modules, either user coded or provided in a code library; each module is composed of one or more procedures, also called a function, routine, subroutine, or method, depending on the language. Examples of procedural languages include:


26. Reflective Language

Reflective languages let programs examine and possibly modify their high level structure at runtime or compile-time. This is most common in high-level virtual machine programming languages like Smalltalk, and less common in lower-level programming languages like C. Languages and platforms supporting reflection:


27. Rule-based languages

Rule-based languages instantiate rules when activated by conditions in a set of data. Of all possible activations, some set is selected and the statements belonging to those rules execute. Rule-based languages include:


28. Scripting languages

"Scripting language" has two apparently different, but in fact similar, meanings. In a traditional sense, scripting languages are designed to automate frequently used tasks that usually involve calling or passing commands to external programs. Many complex application programs provide built-in languages that let users automate tasks. Those that are interpretive are often called scripting languages.

Recently, many applications have built-in traditional scripting languages, such as Perl or Visual Basic, but there are quite a few native scripting languages still in use. Many scripting languages are compiled to bytecode and then this usually platform-independent bytecode is run through a virtual machine compare to Java virtual machine.


29. Synchronous languages

Synchronous programming languages are optimized for programming reactive systems, systems that are often interrupted and must respond quickly. Many such systems are also called realtime systems, and are used often in embedded systems.


  • Esterel
  • Argus
  • Averest
  • Lustre
  • Signal

30. Shading languages

A shading language is a graphics programming language adapted to programming shader effects. Such language forms usually consist of special data types, like "color" and "normal". Due to the variety of target markets for 3D computer graphics.

Real-time rendering

They provide both higher hardware abstraction and a more flexible programming model than previous paradigms which hardcoded transformation and shading equations. This gives the programmer greater control over the rendering process and delivers richer content at lower overhead.

Offline rendering

Shading languages used in offline rendering produce maximum image quality. Processing such shaders is time-consuming. The computational power required can be expensive because of their ability to produce photorealistic results.


31. Syntax handling languages

These languages assist with generating lexical analyzers and parsers for context-free grammars.

  • glex/gyacc GoboSoft compiler to Eiffel
  • GNU Flex FSF version of Lex
  • M4
  • GNU bison FSFs version of Yacc
  • Coco/R EBNF with semantics
  • Prolog
  • JavaCC
  • Emacs Lisp
  • Parsing expression grammar PEG
  • Lisp
  • yacc yet another compiler compiler, from Bell Labs
  • Scheme
  • lex Lexical Analysis, from Bell Labs

32. System languages

The system programming languages are for low level tasks like memory management or task management. A system programming language usually refers to a programming language used for system programming; such languages are designed for writing system software, which usually requires different development approaches when compared with application software.

System software is computer software designed to operate and control the computer hardware, and to provide a platform for running application software. System software includes software categories such as operating systems, utility software, device drivers, compilers, and linkers. Examples of system languages include:


33. Visual languages

Visual programming languages let users specify programs in a two-or more-dimensional way, instead of as one-dimensional text strings, via graphic layouts of various types. Some dataflow programming languages are also visual languages.

  • Go, also known as Golang, is a statically typed compiled programming language designed at Google by Robert Griesemer, Rob Pike, and Ken Thompson. Go is
  • way to program computers. Assembly language was the next type of language used, and thus is one of the oldest families of computer languages in use today
  • dynamically typed and garbage - collected. It supports multiple programming paradigms, including procedural, object - oriented, and functional programming Python
  • Eiffel is an object - oriented programming language designed by Bertrand Meyer an object - orientation proponent and author of Object - Oriented Software Construction
  • tables of functional programming instructions between programming languages Comparison of basic instructions of imperative paradigm is provided by the comparison

Users also searched:

there are two types of programming languages,