ⓘ Cohort analysis


ⓘ Cohort analysis

Cohort analysis is a subset of behavioral analytics that takes the data from a given data set and rather than looking at all users as one unit, it breaks them into related groups for analysis. These related groups, or cohorts, usually share common characteristics or experiences within a defined time-span. Cohort analysis allows a company to" see patterns clearly across the life-cycle of a customer, rather than slicing across all customers blindly without accounting for the natural cycle that a customer undergoes.” By seeing these patterns of time, a company can adapt and tailor its service to those specific cohorts. While cohort analysis is sometimes associated with a cohort study, they are different and should not be viewed as one and the same. Cohort analysis is specifically the analysis of cohorts in regards to big data and business analytics, while in cohort study, data is broken down into similar groups.


1. Examples

The goal of a business analytics tool is to analyze and present actionable information. In order for a company to act on such information it must be relevant to the situation under analysis. A database full of thousands or even millions of entries of all user data makes it tough to gain actionable data, as that data spans many different categories and time periods. Actionable cohort analysis allows for the ability to drill down to the users of each specific cohort to gain a better understanding of their behaviors, such as if users checked out, and how much did they pay. In cohort analysis "each new group provides the opportunity to start with a fresh set of users," allowing the company to look at only the data that is relevant to the current query and act on it.

In eCommerce, a firm may only be interested in customers who signed up in the last two weeks and who made a purchase, which is an example of a specific cohort. A software developer may only care about the data from users who sign up after a certain upgrade, or who use certain features of the platform.

An example of cohort analysis of gamers on a certain platform: Expert gamers, cohort 1, will care more about advanced features and lag time compared to new sign-ups, cohort 2. With these two cohorts determined, and the analysis run, the gaming company would be presented with a visual representation of the data specific to the two cohorts. It could then see that a slight lag in load times has been translating into a significant loss of revenue from advanced gamers, while new sign-ups have not even noticed the lag. Had the company simply looked at its overall revenue reports for all customers, it would not have been able to see the differences between these two cohorts. Cohort analysis allows a company to pick up on patterns and trends and make the changes necessary to keep both advanced and new gamers happy.


2. Deep actionable cohort analytics

"An actionable metric is one that ties specific and repeatable actions to observed results observed result".


3. Performing cohort analysis

In order to perform a proper cohort analysis, there are four main stages:

  • ’’ Test results.’’’ Make sure the results make sense.
  • Define the metrics that will be able to help you answer the question. A proper cohort analysis requires the identification of an event, such as a user checking out, and specific properties, like how much the user paid. The gaming example measured a customers willingness to buy gaming credits based on how much lag time there was on the site.
  • Determine what question you want to answer. The point of the analysis is to come up with actionable information on which to act in order to improve business, product, user experience, turnover, etc. To ensure that happens, it is important that the right question is asked. In the gaming example above, the company was unsure why they were losing revenue as lag time increased, despite the fact that users were still signing up and playing games.
  • Define the specific cohorts that are relevant. In creating a cohort, one must either analyze all the users and target them or perform attribute contribution in order to find the relevant differences between each of them, ultimately to discover and explain their behavior as a specific cohort. The above example splits users into "basic" and "advanced" users as each group differs in actions, pricing structure sensitivities, and usage levels.
  • Perform the cohort analysis. The analysis above was done using data visualization which allowed the gaming company to realize that their revenues were falling because their higher-paying advanced users were not using the system as the lag time increased. Since the advanced users were such a large portion of the companys revenue, the additional basic user signups were not covering the financial losses from losing the advanced users. In order to fix this, the company improved their lag times and began catering more to their advanced users.