ⓘ Programming tool


History of free and open-source software

In the 1950s and 1960s, computer operating software and compilers were delivered as a part of hardware purchases without separate fees. At the time, source code, the human-readable form of software, was generally distributed with the software providing the ability to fix bugs or add new functions. Universities were early adopters of computing technology. Many of the modifications developed by universities were openly shared, in keeping with the academic principles of sharing knowledge, and organizations sprung up to facilitate sharing. As large-scale operating systems matured, fewer organi ...

Programming tool

ⓘ Programming tool

A programming tool or software development tool is a computer program that software developers use to create, debug, maintain, or otherwise support other programs and applications. The term usually refers to relatively simple programs, that can be combined together to accomplish a task, much as one might use multiple hand tools to fix a physical object. The most basic tools are a source code editor and a compiler or interpreter, which are used ubiquitously and continuously. Other tools are used more or less depending on the language, development methodology, and individual engineer, and are often used for a discrete task, like a debugger or profiler. Tools may be discrete programs, executed separately – often from the command line – or may be parts of a single large program, called an integrated development environment. In many cases, particularly for simpler use, simple ad hoc techniques are used instead of a tool, such as print debugging instead of using a debugger, manual timing instead of a profiler, or tracking bugs in a text file or spreadsheet instead of a bug tracking system.

The distinction between tools and applications is murky. For example, developers use simple databases such as a file containing a list of important values all the time as tools. However a full-blown database is usually thought of as an application or software in its own right. For many years, computer-assisted software engineering CASE tools were sought after. Successful tools have proven elusive. In one sense, CASE tools emphasized design and architecture support, such as for UML. But the most successful of these tools are IDEs.


1.1. Uses of programming tools Translating from human to computer language

Modern computers are very complex and in order to productively program them, various abstractions are needed. For example, rather than writing down a programs binary representation a programmer will write a program in a programming language like C, Java or Python. Programming tools like assemblers, compilers and linkers translate a program from a human write-able and readable source language into the bits and bytes that can be executed by a computer. Interpreters interpret the program on the fly to produce the desired behavior.

These programs perform many well defined and repetitive tasks that would nonetheless be time consuming and error-prone when performed by a human, like laying out parts of a program in memory and fixing up the references between parts of a program as a linker does. Optimizing compilers on the other hand can perform complex transformations on the source code in order to improve the execution speed or other characteristics of a program. This allows a programmer to focus more on higher level, conceptual aspects of a program without worrying about the details of the machine it is running on.


1.2. Uses of programming tools Making program information available for humans

Because of the high complexity of software, it is not possible to understand most programs at a single glance even for the most experienced software developer. The abstractions provided by high-level programming languages also make it harder to understand the connection between the source code written by a programmer and the actual programs behaviour. In order to find bugs in programs and to prevent creating new bugs when extending a program, a software developer uses some programming tools to visualize all kinds of information about programs.

For example, a debugger allows a programmer to extract information about a running program in terms of the source language used to program it. The debugger can compute the value of a variable in the source program from the state of the concrete machine by using information stored by the compiler. Memory debuggers can directly point out questionable or outright wrong memory accesses of running programs which may otherwise remain undetected and are a common source of program failures.


2. List of tools

Software tools come in many forms:

  • Documentation generators: Comparison of documentation generators, help2man, Plain Old Documentation, asciidoc
  • Parser generators: Parsing#Parser development software
  • Revision control: List of revision control software, Comparison of revision control software
  • Bug databases: Comparison of issue tracking systems - Including bug tracking systems
  • Formal methods: Mathematical techniques for specification, development and verification
  • Call graph
  • Library interface generators: SWIG
  • Search: grep, find
  • Performance analysis or profiling: List of performance analysis tool
  • Source code editor
  • Source code Clones/Duplications Finding: Duplicate code#Tools
  • Code sharing sites: Freshmeat, Krugle, Sourceforge, GitHub. See also Code search engines.
  • Build tools: Build automation, List of build automation software
  • Binary compatibility analysis tools
  • Memory debuggers are frequently used in programming languages such as C and C++ that allow manual memory management and thus the possibility of memory leaks and other problems. They are also useful to optimize efficiency of memory usage. Examples: dmalloc, Electric Fence, Insure++, Valgrind
  • GUI interface generators
  • Debuggers: Debugger#List of debuggers. See also Debugging.
  • Integration Tools
  • Code coverage: Code coverage#Software code coverage tools.
  • Code review: List of tools for code review
  • Compilation and linking tools: GNU toolchain, gcc, Microsoft Visual Studio, CodeWarrior, Xcode, ICC
  • Disassemblers: Generally reverse-engineering tools.
  • Text editors: List of text editors, Comparison of text editors
  • Scripting languages: PHP, Awk, Perl, Python, REXX, Ruby, Shell, Tcl
  • Unit testing: List of unit testing frameworks
  • Source code formatting: indent, pretty-printers, beautifiers, minifiers
  • Source code generation tools: Automatic programming#Implementations
  • Static code analysis: lint, List of tools for static code analysis


3. IDEs

Integrated development environments combine the features of many tools into one package. They for example make it easier to do specific tasks, such as searching for content only in files in a particular project. IDEs may for example be used for development of enterprise-level applications.

Different aspects of IDEs for specific programming languages can be found in this comparison of integrated development environments.

  • In the field of software, SQL programming tools provide platforms for database administrators DBAs and application developers to perform daily tasks
  • Splint, short for Secure Programming Lint, is a programming tool for statically checking C programs for security vulnerabilities and coding mistakes. Formerly
  • US city TOOL the proprietary programming language used by Forte 4GL Tool a derogatory term Programming tool or software development tool a computer
  • lint, or a linter, is a tool that analyzes source code to flag programming errors, bugs, stylistic errors, and suspicious constructs. The term originates
  • In software, a toolchain is a set of programming tools that is used to perform a complex software development task or to create a software product, which
  • OJ, formerly named OpenJava, is a programming tool that parses and analyzes Java source code. It uses a metaobject protocol MOP to provide services for
  • Automatically Programmed Tool is a high - level computer programming language most commonly used to generate instructions for numerically controlled machine tools Douglas
  • computing, a visual programming language VPL is any programming language that lets users create programs by manipulating program elements graphically
  • toolchain is a broad collection of programming tools produced by the GNU Project. These tools form a toolchain a suite of tools used in a serial manner used
  • Literate programming is a programming paradigm introduced by Donald Knuth in which a computer program is given an explanation of its logic in a natural
  • The ICFP Programming Contest is an international programming competition held annually around June or July since 1998, with results announced at the International